2019 Consumer Confidence Report

Water System Name: County Service Area No. 11
Report Date: June 29, 2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2019 and may include earlier monitoring data.

Terms Used in This Report

- **Primary Drinking Water Standards (PDWS):** MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
- **Secondary Drinking Water Standards (SDWS):** MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
- **Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water.
- **Regulatory Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
- **Variances and Exemptions:** Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Maximum Contaminant Level (MCL):** The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL):** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG):** The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Time and Place of Regularly Scheduled Board Meetings for Public Participation:

- **Location:** County Service Area No. 11, 910 Bean Hollow Road, Pescadero, CA 94060, (650) 363-4100 para asistirlo en español.
- **Location:** County Service Area No. 11, 910 Bean Hollow Road, Pescadero, CA 94060 o tumawag sa (650) 363-4100 para matulungan sa wikang Tagalog.
- **Location:** County Service Area No. 11, 910 Bean Hollow Road, Pescadero, CA 94060, (650) 363-4100 rau kev pab hauv lus Askiv.

Type of Water Source(s) in Use:

- Groundwater Wells

Drinking Water Source Assessment Information:

- Prepared by County Environmental Health Services in November 2002. Assessment Summary included at end of the report.

For More Information, Contact:

- Mark Chow, Principal Civil Engineer
- Phone: (650) 599-1489

Level 1 Assessment:

- A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment:

- A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: **not detectable at testing limit**

- **ppm:** parts per million or milligrams per liter (mg/L)
- **ppb:** parts per billion or micrograms per liter (µg/L)
- **ppt:** parts per trillion or nanograms per liter (ng/L)
- **ppq:** parts per quadrillion or picogram per liter (pg/L)
- **pCi/L:** picocuries per liter (a measure of radiation)
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants**, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **Pesticides and herbicides**, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- **Radioactive contaminants**, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA

<table>
<thead>
<tr>
<th>Microbiological Contaminants (complete if bacteria detected)</th>
<th>Highest No. of Detections</th>
<th>No. of Months in Violation</th>
<th>MCL</th>
<th>MCLG</th>
<th>Typical Source of Bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria (state Total Coliform Rule)</td>
<td>(In a month) 3*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Fecal Coliform or E. coli (state Total Coliform Rule)</td>
<td>(In the year) 0</td>
<td></td>
<td>A</td>
<td></td>
<td>Human and animal fecal waste</td>
</tr>
<tr>
<td>E. coli (federal Revised Total Coliform Rule)</td>
<td>(In the year) 0</td>
<td></td>
<td>(b)</td>
<td>0</td>
<td>Human and animal fecal waste</td>
</tr>
</tbody>
</table>

(a) Two or more positive monthly samples is a violation of the MCL
(b) Routine and repeat samples are total coliform-positive and either is E. coli-positive or system fails to take repeat samples following E. coli-positive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli.

TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER

<table>
<thead>
<tr>
<th>Lead and Copper (complete if lead or copper detected in the last sample set)</th>
<th>Sample Date</th>
<th>No. of Samples Collected</th>
<th>90th Percentile Level Detected</th>
<th>No. Sites Exceeding AL</th>
<th>AL</th>
<th>PHG</th>
<th>No. of Schools Requesting Lead Sampling</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppb)</td>
<td>2019</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0.2</td>
<td>1</td>
<td>Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>2018</td>
<td>5</td>
<td>0.450</td>
<td>0</td>
<td>1.3</td>
<td>0.3</td>
<td>Not applicable</td>
<td>Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
</tbody>
</table>
TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS

<table>
<thead>
<tr>
<th>Chemical or Constituent (and reporting units)</th>
<th>Sample Date</th>
<th>Level Detected</th>
<th>Range of Detections</th>
<th>MCL</th>
<th>PHG (MCLG)</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (ppm)</td>
<td>2018</td>
<td>56</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Salt present in the water and is generally naturally occurring</td>
</tr>
<tr>
<td>Hardness (ppm)</td>
<td>2018</td>
<td>133</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring</td>
</tr>
</tbody>
</table>

TABLE 4 – DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD

<table>
<thead>
<tr>
<th>Chemical or Constituent (and reporting units)</th>
<th>Sample Date</th>
<th>Level Detected</th>
<th>Range of Detections</th>
<th>MCL [MRDL]</th>
<th>PHG (MCLG) [MRDLG]</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride (ppm)</td>
<td>2018</td>
<td>0.11</td>
<td>2.0</td>
<td>1</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories</td>
<td></td>
</tr>
<tr>
<td>Hexavalent Chromium (ppb)</td>
<td>2017</td>
<td>4.0</td>
<td>10</td>
<td>0.02</td>
<td>Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Nitrate (ppm as nitrogen, N)</td>
<td>2019</td>
<td>2.4</td>
<td>10</td>
<td>10</td>
<td>Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits</td>
<td></td>
</tr>
</tbody>
</table>

RADIOACTIVE CONTAMINANTS

| Gross Alpha Activity [composite result] (pCi/L) | 2013 | 2.32 | 15 | (0) | Erosion of natural deposits |

TABLE 5 – DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD

<table>
<thead>
<tr>
<th>Chemical or Constituent (and reporting units)</th>
<th>Sample Date</th>
<th>Level Detected</th>
<th>Range of Detections</th>
<th>SMCL</th>
<th>PHG (MCLG)</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride (ppm)</td>
<td>2018</td>
<td>85</td>
<td>500</td>
<td>None</td>
<td>Runoff/leaching from natural deposits; seawater influence</td>
<td></td>
</tr>
<tr>
<td>Specific Conductance [µmhos/cm]</td>
<td>2018</td>
<td>550 - 560</td>
<td>1,600</td>
<td>None</td>
<td>Substances that form ions when in water; seawater influence</td>
<td></td>
</tr>
<tr>
<td>Sulfate (ppm)</td>
<td>2018</td>
<td>16</td>
<td>500</td>
<td>None</td>
<td>Runoff/leaching from natural deposits; industrial wastes</td>
<td></td>
</tr>
<tr>
<td>Total Dissolved Solids [TDS] (ppm)</td>
<td>2018</td>
<td>350</td>
<td>1,000</td>
<td>None</td>
<td>Runoff/leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>2018</td>
<td>0.61</td>
<td>5</td>
<td>None</td>
<td>Soil runoff</td>
<td></td>
</tr>
</tbody>
</table>

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA’s Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).
Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. CSA 11 is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

<table>
<thead>
<tr>
<th>Violation</th>
<th>Explanation</th>
<th>Duration</th>
<th>Actions Taken to Correct the Violation</th>
<th>Health Effects Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria (state Total Coliform Rule)</td>
<td>Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other potentially-harmful bacteria may be present. Coliforms were detected in routine samples taken by CSA 11.</td>
<td>January 2019 - December 2019</td>
<td>CSA 11 implemented permanent disinfection of the water in 2019 as required by DDW and will continue to monitor levels of Total Coliform Bacteria in the system.</td>
<td>Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.</td>
</tr>
</tbody>
</table>

Drinking Water Source Assessment and Protection (DWSAP) Program

A source water assessment was conducted for the Well 1 and Well 2 of the County Service Area No. 11 water system in November 2002. The source is considered most vulnerable to the following activities not associated with any detected contaminants:

- Historic waste dumps/landfills

Discussion of Vulnerability

There have been no contaminants detected in the water supply, however the source is still considered vulnerable to activities located near the drinking water source. The 2002 source water assessment identified that the source is most vulnerable to the following activities within the recharge area for Well 1 and Well 2:

2. Transportation Corridors – Road Right-of-ways (herbicide use areas) – potential source of herbicides used to control weeds along roadside and potential source of automotive chemicals.
3. Well 2 – Waste Transfer/Recycling Stations – a potential source of illicitly disposed household, industrial or agricultural chemicals. Also a potential source for bacterial contamination.

Due to the proximity of Well 3 to the other wells, it is anticipated that the same vulnerabilities identified above would apply to Well 3.

The CSA 11 public water system conducts routine periodic monitoring of the water quality from Well 1 and Well 2 to ensure that the water supply is safe for human consumption. Similar routine periodic monitoring of the water quality from Well 3 will be conducted once this well becomes the primary production well for CSA 11. The well heads are secured and protected from surface flooding.

A copy of the complete assessment can be obtained at: