San Francisco Class B Airspace Modification

Northern California TRACON
Oakland – Hawaii District
16 August 2018
BRIEFING OVERVIEW

• Class B Modification Process
• Reasons the Class Bravo Airspace was Changed
• Overview of Revised Class Bravo Airspace
• Accommodation of VFR Operations In and Around Class Bravo Airspace
• Details of SFO Traffic Flows in Revised Airspace
• Questions, Answers, and User Comments
Class B Modification Process / NPRM:

- Controlled airspace actions are implemented through rulemaking under 14 CFR part 71 which incorporates FAAO 7400.11.
- Controlled airspace action process is outlined in FAAO 7400.2.
- FAA identifies a need to make an airspace change typically based on user feedback and/or amendments to IAPs.
- FAA prepares draft study and proposal.
- FAA coordinates with state aviation department, or another aviation-related organization, to lead an ad hoc committee effort to examine proposal.
- The ad hoc committee, comprised of various local aviation representatives, provides input and recommendations to the FAA regarding Class B and C airspace changes.
- FAA is obligated to consider, and to the extent practicable, incorporate the ad hoc committee’s recommendations provided they are operationally feasible and do not conflict with any regulation or procedure.
Class B Establishment / Modification Process / NPRM: (FAAO 7400.2)

• The FAA is obligated to hold informal public meetings with affected airspace users to gather comments and information relevant to the proposed rule-making. The proposed airspace design may be modified based on the comments received.

• The FAA reviews all comments/input received from the informal airspace meetings and consider whether to incorporate any into the Class B design that will be published in a the NPRM for a 60-day public comment period.

• The FAA reviews and consider all public comments received in response to the NPRM and responds to the issues raised by the public comments. The proposed airspace design may be modified based on the comments received.

• Should the FAA elect to proceed with the airspace action, the date selected must meet a scheduled sectional change date.
DEPARTMENT OF ENERGY
Federal Energy Regulatory Commission
18 CFR Parts 33 and 35
(Docket Nos. RM09-16-000 and PL09-3-000)

Control and Affiliation for Purposes of Market-Based Rate Requirements Under the Federal Power Act

AGENCY: Federal Energy Regulatory Commission, DOE.

ACTION: Notice of proposed rulemaking and termination of rulemaking proceeding.

SUMMARY: The Federal Energy Regulatory Commission (Commission) is withdrawing a notice of proposed rulemaking, which proposed to amend its regulations pursuant to the Federal Power Act to grant blanket authorizations to acquire 10 percent or more, but less than 20 percent of the outstanding voting securities of a public utility or holding company and amend the definitions of “affiliate” in the Commission’s regulations. The Commission is also terminating a proceeding on the Electric Power Supply Association’s petition requesting guidance.

DATES: The notice of proposed rulemaking published on January 28, 2010, at 75 FR 4498, is withdrawn as of November 9, 2016.

SUPPLEMENTARY INFORMATION:

1. On January 21, 2010, the Commission issued a Notice of Proposed Rulemaking (NOPR) in this proceeding.1 For the reasons set forth below, we are exercising our discretion to withdraw the NOPR and terminate this rulemaking proceeding.

I. Background

2. On September 2, 2008, the Electric Power Supply Association (EPSA) filed a petition requesting guidance regarding concepts of control and affiliation as they relate to Commission-jurisdictional transactions under sections 203 and 205 of the Federal Power Act (FPA).2 EPSA
Reasons the Class Bravo Airspace was Changed

• Updated Aircraft Technology
 - Today’s Fleet Utilizes a More Efficient Wing Design
 - Optimal Descent Angle of 2.72° to 2.85° in a Clean Configuration
 - Modern FMS Can Manage Both Lateral and Vertical Path
 - Today’s FMS Capable Of Managing a Descent From Cruise Altitudes To the Runway at Near-idle Thrust
 - Low-thrust Descent in a Clean Configuration Results in a Smaller Noise Footprint
 - Descent in a Clean Configuration also Results in a Lower Fuel Burn and Associated Carbon Emissions
• Use of Optimized Profile Descents (OPD)
 - RNAV STAR Delivers Predictable and Repeatable Flight Path
 - Coded into FMS
 - Allows for Continuous Clean Configuration Descent at Idle-Thrust
Current vs Revised SFO Class B Airspace
SFO CBA & Common Bay Area Airports
SFO CBA & VFR Waypoints
VFR Corridors

• A VFR Corridor is a route for the passage of uncontrolled traffic. A VFR corridor is defined as airspace through Class B airspace, with defined vertical and lateral boundaries, in which aircraft may operate without an ATC clearance or communication with air traffic control.

• Due to the density of traffic, there are NO VFR corridors through the SFO Class Bravo Airspace.
VFR Flyways

• VFR Flyways are depicted on the reverse side of the VFR Terminal Area Charts (TAC), commonly referred to as Class B airspace charts.

• For use by pilots in planning flights into, out of, through or near complex terminal airspace to avoid Class B airspace. An ATC clearance is NOT required to fly these routes.

• It is very important to remember that these suggested routes are not sterile of other traffic. The entire Class B airspace, and the airspace underneath it, may be heavily congested with many different types of aircraft. Pilot adherence to VFR rules must be exercised at all times.

• The SFO Class Bravo VFR Flyway Chart will depict a unique named VFR Flyway that will require ATC communication as it goes through the OAK Class C airspace.
Bay Flyway - over OAK

ATC Assigned Altitude
(Expect to cross OAK at 2,000)

Example Phraseology:
“Proceed via NE to SW Bay Flyway, Remain Clear of Class Bravo.”
Accommodation of VFR Operations In and Around Class Bravo Airspace

- VFR Flyways
Class B Transition Routes

• Transition Route is defined as a specific route depicted on a TAC for transiting through the Class B airspace. These routes include specific ATC-assigned altitudes, and pilots must obtain an ATC clearance prior to entering Class B airspace on the route.

• Transition routes are designed to show the pilot where to position the aircraft outside of, or clear of, the Class B airspace where an ATC clearance can normally be expected with minimal or no delay.

• Until ATC authorization is received, pilots must remain clear of Class B airspace. On initial contact, pilots should advise ATC of their position, altitude, route name desired, and direction of flight. After a clearance is received, pilots must fly the route as depicted and, most importantly, adhere to ATC instructions.
Bayshore Transition
1,500’ to 3,500’
Pacifica Transition
1,500’ to 3,500’
Coastline Transition
At or above 3,500’
SQL Class D Changes

At or Below 2000

Below 1500

Effective August 16, 2018
OAK Class C Surface Area Changes
Surface to 1,499'
2,100’ to 2,299’
3,000 to 3,999’
7,000’ to 7,999’

Northern California TRACON
Effective August 16, 2018
West Plan Traffic Flows
Southeast Plan Traffic Flows
• Flight Procedures/Instrument Approach Procedures are created and amended through a separate process and are not part of the SFO Class Bravo Airspace Redesign.

• This presentation does not constitute either a final decision of the FAA, or a re-opening of the FAA’s August 6, 2014 final decision for the NorCal Optimization of Airspace & Procedures in the Metroplex.